Generalized Stationary Points and an Interior Point Method for MPEC

نویسندگان

  • Xinwei Liu
  • Jie Sun
چکیده

Mathematical program with equilibrium constraints (MPEC) has extensive applications in practical areas such as traffic control, engineering design, and economic modeling. Some generalized stationary points of MPEC are studied to better describe the limiting points produced by interior point methods for MPEC. A primal-dual interior point method is then proposed, which solves a sequence of relaxed barrier problems derived from MPEC. Global convergence results are deduced without assuming strict complementarity or linear independence constraint qualification. Under very general assumptions, the algorithm can always find some point with strong or weak stationarity. In particular, it is shown that every limiting point of the generated sequence is a piecewise stationary point of MPEC if the penalty parameter of the merit function is bounded. Otherwise, a certain point with weak stationarity can be obtained. Preliminary numerical results are satisfactory, which include a case analyzed by Leyffer for which the penalty interior point algorithm failed to find a stationary solution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized stationary points and an interior-point method for mathematical programs with equilibrium constraints

Generalized stationary points of the mathematical program with equilibrium constraints (MPEC) are studied to better describe the limit points produced by interior point methods for MPEC. A primal-dual interior-point method is then proposed, which solves a sequence of relaxed barrier problems derived from MPEC. Global convergence results are deduced without assuming strict complementarity or the...

متن کامل

Some points on generalized open sets

The paper is an attempt to represent a study of limit points, boundary points, exterior points, border, interior points and closure points in the common generalized topological space. This paper takes a look at the possibilities of an extended topological space and it also considers the new characterizations of dense set.

متن کامل

A New Relaxation Scheme for Mathematical Programs with Equilibrium Constraints

We present a new relaxation scheme for mathematical programs with equilibrium constraints (MPEC), where the complementarity constraints are replaced by a reformulation that is exact for the complementarity conditions corresponding to sufficiently non-degenerate complementarity components and relaxes only the remaining complementarity conditions. A positive parameter determines to what extent th...

متن کامل

Necessary and Sufficient Optimality Conditions for Mathematical Programs with Equilibrium Constraints∗

In this paper we consider a mathematical program with equilibrium constraints (MPEC) formulated as a mathematical program with complementarity constraints. Various stationary conditions for MPECs exist in literature due to different reformulations. We give a simple proof to the M-stationary condition and show that it is sufficient for global or local optimality under some MPEC generalized conve...

متن کامل

Mathematical Programs with Equilibrium Constraints: A sequential optimality condition, new constraint qualifications and algorithmic consequences

Mathematical programs with equilibrium (or complementarity) constraints, MPECs for short, are a difficult class of constrained optimization problems. The feasible set has a very special structure and violates most of the standard constraint qualifications (CQs). Thus, the Karush-Kuhn-Tucker (KKT) conditions are not necessarily satisfied by minimizers and the convergence assumptions of many meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002